Zhu, H., Yang, Y., Wang, Y. et al. Dynamic characterization and interpretation for protein-RNA interactions across diverse cellular conditions using HDRNet.

Nature Communications 14, 6824 (2023).

Sun L, Xu K, Huang W, et al. Predicting dynamic cellular protein–RNA interactions by deep learning using in vivo RNA structures.

Cell research, 2021, 31(5): 495-516.

Alipanahi B, Delong A, Weirauch M T, et al. Predicting the sequence specificities of DNA-and RNA-binding proteins by deep learning.

Nature biotechnology, 2015, 33(8): 831-838.

Yang Y, Hou Z, Wang Y, et al. HCRNet: high-throughput circRNA-binding event identification from CLIP-seq data using deep temporal convolutional network.

Briefings in Bioinformatics, 2022, 23(2).

Yang Y, Hou Z, Ma Z, et al. iCircRBP-DHN: identification of circRNA-RBP interaction sites using deep hierarchical network.

Briefings in Bioinformatics, 2021, 22(4): bbaa274.

Wu H, Pan X, Yang Y, et al. Recognizing binding sites of poorly characterized RNA-binding proteins on circular RNAs using attention Siamese network.

Briefings in bioinformatics, 2021, 22(6): bbab279.

Zhang K, Pan X, Yang Y, et al. CRIP: predicting circRNA–RBP-binding sites using a codon-based encoding and hybrid deep neural networks.

Rna, 2019, 25(12): 1604-1615.

Wang Z, Lei X, Wu F X. Identifying cancer-specific circRNA–RBP binding sites based on deep learning.

Molecules, 2019, 24(22): 4035.

Pan X, Shen H B. RNA-protein binding motifs mining with a new hybrid deep learning based cross-domain knowledge integration approach.

BMC bioinformatics, 2017, 18(1): 1-14.

Armaos, A. et al. (2017). omixcore: a web server for prediction of protein interactions with large rna.

Bioinformatics, 33(19), 3104–3106.

Du, W. W. et al. (2016). Foxo3 circular rna retards cell cycle progression via forming ternary complexes with p21 and cdk2.

Nucleic acids research, 44(6), 2846–2858.

Du, W. W. et al. (2017). Identifying and characterizing circrna-protein interaction.

Theranostics, 7(17), 4183.

Du, X. et al. (2022). Deepbtod: Improved rna-binding proteins prediction via integrated deep learning.

Journal of Bioinformatics and Computational Biology, 20(04), 2250006.

Grønning, A. G. B. et al. (2020). Deepclip: predicting the effect of mutations on protein–rna binding with deep learning.

Nucleic acids research, 48(13), 7099–7118.

Hentze, M. W. et al. (2018). A brave new world of rna-binding proteins.

Nature reviews Molecular cell biology, 19(5), 327–341.

Ji, Y. et al. (2021). Dnabert: pre-trained bidirectional encoder representations from transformers model for dna-language in genome.

Bioinformatics, 37(15), 2112–2120.

Jia, C. et al. (2020). Passion: an ensemble neural network approach for identifying the binding sites of rbps on circrnas.

Bioinformatics, 36(15), 4276–4282.

Ju, Y. et al. (2019). Circslnn: identifying rbp-binding sites on circrnas via sequence labeling neural networks.

Frontiers in genetics, page 1184.

Kumar, M. et al. (2011). Svm based prediction of rna-binding proteins using binding residues and evolutionary information.

Journal of Molecular Recognition, 24(2), 303–313.

Lorenz, R. et al. (2011). Viennarna package 2.0.

Algorithms for molecular biology, 6, 1–14.

Ma, H. et al. (2022). Rnanetmotif: identifying sequence-structure rna network motifs in rna-protein binding sites.

PLOS Computational Biology, 18(7), e1010293.

Maticzka, D. et al. (2014). Graphprot: modeling binding preferences of rna-binding proteins.

Genome biology, 15(1), 1–18.

Orenstein, Y. et al. (2016). Rck: accurate and efficient inference of sequence-and structure-based protein–rna binding models from rnacompete data.

Bioinformatics, 32(12), i351–i359.

Paz, I. et al. (2014). Rbpmap: a web server for mapping binding sites of rna-binding proteins.

Nucleic acids research, 42(W1), W361–W367.

Pedregosa, F. et al. (2011). Scikit-learn: Machine learning in python.

The Journal of machine Learning research, 12, 2825–2830.

Pietrosanto, M. et al. (2018). Beam web server: a tool for structural rna motif discovery.

Bioinformatics, 34(6), 1058–1060.

Qu, S. et al. (2015). Circular rna: a new star of noncoding rnas.

Cancer letters, 365(2), 141–148.

Verleysen, M. and François, D. (2005). The curse of dimensionality in data mining and time series prediction.

In Computational Intelligence and Bioinspired Systems: 8th International Work-Conference on Artificial Neural Networks, IWANN 2005, Vilanova i la Geltrú, Barcelona, Spain, June 8-10, 2005. Proceedings 8, pages 758–770. Springer.

Wang, H. and Zhao, Y. (2020). Rbinds: a user-friendly server for rna binding site prediction.

Computational and Structural Biotechnology Journal, 18, 3762–3765.

Wang, Z. and Lei, X. (2021). Identifying the sequence specificities of circrna-binding proteins based on a capsule network architecture.

BMC bioinformatics, 22(1), 1–16.

Wei, W.-J. et al. (2012). Yb-1 binds to cauc motifs and stimulates exon inclusion by enhancing the recruitment of u2af to weak polypyrimidine tracts.

Nucleic acids research, 40(17), 8622–8636.

Zhang, S. et al. (2016). A deep learning framework for modeling structural features of rna-binding protein targets.

Nucleic acids research, 44(4), e32–e32.